Jeans Mass

Some notes about the Jeans mass scale using astropy's units.

Simple approaches to determining mass scales:

vesc = ((GM)/(R))

Isothermal equation of state:

P = ρkT
cs = (2kT ⁄ m)

Setting vesc = cs yields the mass scale:

M = (R)/(G)(2kT)/(m) = (Rc2s)/(G)

Using ρ = (M)/(4 ⁄ 3πR3),

R = (M)/(4 ⁄ 3πρ)1 ⁄ 3

so

M = M1 ⁄ 3(c2s)/(Gρ1 ⁄ 3)

which rearranges to

M = (c3s)/(G3 ⁄ 2ρ1 ⁄ 2)

where M is now MJ, the Jeans mass. In terms of temperature, this is:

MJ = ((2kT)3 ⁄ 2)/((mG)3 ⁄ 2ρ1 ⁄ 2)

where m is the particle mass, usually assumed to be 2.8 amu. (actually, 2.8 is for mass per H$_2$ particle, it should really be 2.3 amu)

In[1]:

# astropy imports
import astropy.units as u
import astropy.constants as c
# turn off verbose but unnecessary information
import warnings
warnings.filterwarnings('ignore')
warnings.filterwarnings('ignore', category=u.UnitsWarning, append=True)
WARNING: ConfigurationDefaultMissingWarning: Requested default
configuration file /Users/adam/repos/astropy/astropy/astropy.cfg is not a
file. Cannot install default profile. If you are importing from source,
this is expected. [astropy]

In[7]:

amu = c.m_p
temperature = 10 * u.K
m = (((2 * c.k_B * temperature)**1.5 / ((2.8*c.m_p*c.G)**1.5 * (2.8*1e4*amu / u.cm**3)**(1/2.)))).cgs

In[5]:

m.to(u.solMass)

Out[5]:

1.92903 M
<Quantity 1.92902547696 solMass>