
FeatheringFeathering
 can be found at  until

next week. Please follow along on your laptop or phone.

Goals:

Describe and demonstrate feathering process
Show some of the free parameters that can be selected when feathering
Show various visualizations that can be used to assess goodness-of-merge

PSD plots
Residuals from theoretical

Demonstrate limitations of image combination
Show tools for simulating realistic synthetic data

This talk (FeatheringPresentation.ipynb) http://small.cat/hat (http://small.cat/hat)

https://keflavich.github.io/talks/FeatheringPresentation/FeatheringPresentation.ipynb
http://small.cat/hat


What is feathering?What is feathering?
Fourier-space (UV-space) weighted averaging of two data sets.

The weight function is selected to match the Fourier transform of the single-dish telescope's beam.



Bene�ts & Costs of featheringBene�ts & Costs of feathering
The good:

Simple
Applicable to non-interferometer (e.g., bolometer + other) data

The bad:

Deceptively simple
Ignores spectral information (see SDINT, TP2VIS talks)
Does not �x interferometric image reconstruction problems
Tricky to balance weights for correctness vs optimal noise



radio-astro-toolsradio-astro-tools

Includes tools for cubes ( ),
beam metadata handling (

), and feathering (
)

http://radio-astro-tools.github.io (http://radio-astro-tools.github.io)

https://spectral-cube.readthedocs.io (https://spectral-cube.readthedocs.io)
https://github.com/radio-astro-tools/radio-beam (https://github.com/radio-

astro-tools/radio-beam) https://github.com/radio-astro-tools/uvcombine/
(https://github.com/radio-astro-tools/uvcombine/)

http://radio-astro-tools.github.io/
https://spectral-cube.readthedocs.io/
https://github.com/radio-astro-tools/radio-beam
https://github.com/radio-astro-tools/uvcombine/


Feathering (combination) testsFeathering (combination) tests

This notebook presents a series of experiments in single-dish + interferometer combination on
"realistic" data.

We're "observing" at 2mm, so a 12m dish has a FWHM=40" Gaussian beam and a 9m baseline has a
sharp cutoff at 56"

This presentation deals mostly with idealized cases; there is no primary beam degradation included in
the simulations.



Requirements for this work:  generates our

synthetic data and helps with power-spectral-density (PSD) plotting. astropy.convolution
provides access to convolution tools, and uvcombine  is our python-only implementation of 

feather .

, especially

turbustat  (https://github.com/Astroua/TurbuStat/)

https://turbustat.readthedocs.io/en/latest/ (https://turbustat.readthedocs.io/en/latest/)
https://turbustat.readthedocs.io/en/latest/generating_test_data.html
(https://turbustat.readthedocs.io/en/latest/generating_test_data.html)

from turbustat.simulator.gen_field import make_extended
from turbustat.statistics import psds
from astropy import convolution, units as u
import numpy as np
from uvcombine.uvcombine import feather_kernel, fftmerge

https://github.com/Astroua/TurbuStat/
https://turbustat.readthedocs.io/en/latest/
https://turbustat.readthedocs.io/en/latest/generating_test_data.html


We create a synthetic power-law power-spectrum image. This sort of image is typical of a dust image of
the Galactic plane, for example.

# create an input image with specified parameters
# (this can later be modified - it will be good to examine the effects of
# different power laws, different types of input...)
# We're assuming a scale of 1"/pixel for this example
imsize = 512
powerlaw = 3
im = make_extended(imsize=imsize, powerlaw=powerlaw, randomseed=0)
# the real sky is positive, so we subtract the minimum to force the overall image positive
im = im - im.min()



Input Image VisualizationInput Image Visualization
This is the input image along with its histogram.



The power spectrum of the input image (set to be ), verifying that the turbustat code works𝛼 = 3



Next, we create our simulated interferometer by creating a UV domain and selecting which pixels in
that domain will be part of our telescope. This process creates an ideal interferometer.

# set up the grid
ygrid, xgrid = np.indices(im.shape, dtype='float')
rr = ((xgrid-im.shape[1]/2)**2+(ygrid-im.shape[0]/2)**2)**0.5

# Create a UV sampling mask.
# This removes all large-angular scale (r<8) features *in UV space* and all
# small angular scales.
# In fourier space, r=0 corresponds to the DC component
# r=1 corresponds to the full map (one period over that map)
# r=256 is the smallest angular scale, which is 2 pixels
# We're assuming a pixel scale of 1" / pixel
# therefore 56" corresponds to 9m at 2mm (i.e., nearly the closest spacing possible for 7m)
# We cut off the "interferometer" at 2.5" resolution
largest_scale = 56.*u.arcsec
smallest_scale = 2.5*u.arcsec
pixscale = 1*u.arcsec
image_scale = im.shape[0]*pixscale # assume symmetric (default=256)
ring = (rr>=(image_scale/largest_scale)) & (rr<=(image_scale/smallest_scale))



Synthetic Perfect InterferometerSynthetic Perfect Interferometer
The synthetic interferometer's UV coverage map (it's a perfect interferometer)





Next, we create the interferometric map by multiplying our interferometer mask by the fourier
transform of the sky data

# create the interferometric map by removing both large and small angular
# scales in fourier space
imfft = np.fft.fft2(im)
imfft_interferometered = imfft * np.fft.fftshift(ring)
im_interferometered = np.fft.ifft2(imfft_interferometered)



The interferometric image does not preserve total �ux, as expected. Note that the mean of the
histogram is shifted.



The residual of the original image minus the interferometrically observed image. The large scales and
noise are preserved.



Not Not quite realistic realistic
This synthetic interferometer map is a "perfect" interferometer image, which is not quite analogous to
images produced by CASA, AIPS, etc. The CLEAN algorithm, while mostly intended to remove PSF
artifacts from the data, also adds some power into the short spacings.



Synthetic Single DishSynthetic Single Dish
The single dish map is just a convolution of the original data with a Gaussian beam. It preserves �ux but
loses small scales.

# create the single-dish map by convolving the image with a FWHM=40" kernel
# (this interpretation is much easier than the sharp-edged stuff in fourier
# space because the kernel is created in real space)
lowresfwhm = 40*u.arcsec
singledish_kernel = convolution.Gaussian2DKernel(lowresfwhm/pixscale/(8*np.log(2))**0.5, 
                                                x_size=im.shape[1], y_size=im.shape[0])
singledish_kernel_fft = np.fft.fft2(singledish_kernel)
singledish_im = convolution.convolve_fft(im, 
                                        kernel=singledish_kernel, 
                                        boundary='fill', 
                                        fill_value=im.mean())



The single-dish image and its histogram



The single dish in Fourier spaceThe single dish in Fourier space
We show the single dish beam in Fourier space with the interferometer coverage range overlaid

pl.cm.gray.set_under((0,0,0))
pl.cm.gray.set_bad((0,0,0))





FeatheringFeathering
Feathering is the combination of the single-dish image with the interferometric image in the UV
domain.

In the uvcombine  package, this is handled by 

.
However, we show the components of that function here.

uvcombine.feather_simple
(https://github.com/radio-astro-tools/uvcombine/blob/master/uvcombine/uvcombine.py#L751)

https://github.com/radio-astro-tools/uvcombine/blob/master/uvcombine/uvcombine.py#L751


For comparison, CASA's feather takes these inputs (

):

https://casa.nrao.edu/casadocs/casa-5.6.0/global-
task-list/task_feather/about (https://casa.nrao.edu/casadocs/casa-5.6.0/global-task-
list/task_feather/about)

#  feather :: Combine two images using their Fourier transforms 
imagename           =         ''        #  Name of output feathered image 
highres             =         ''        #  Name of high resolution (interferometer) image 
lowres              =         ''        #  Name of low resolution (single dish) image 
sdfactor            =        1.0        #  Scale factor to apply to Single Dish image 
effdishdiam         =       -1.0        #  New effective SingleDish diameter to use in m 
lowpassfiltersd     =      False        #  Filter out the high spatial frequencies of the S
D image

https://casa.nrao.edu/casadocs/casa-5.6.0/global-task-list/task_feather/about


ASIDE: Proof that CASA's feather and uvcombine's feather do the sameASIDE: Proof that CASA's feather and uvcombine's feather do the same
thingthing





from casatasks import feather
from casatools import image
ia = image()



feather(imagename=output, 
       highres=input_hires.replace(".fits",".image"), 
       lowres=input_lores.replace(".fits",".image"), 
       sdfactor=sdfactor, 
       lowpassfiltersd=lowpassfilterSD, 
      ) 

_ = ia.open(output)
_ = casa_feather_data = ia.getchunk()
_ = ia.close()





from uvcombine import feather_simple
feathered_hdu = feather_simple(hires=input_hires, 
                              lores=input_lores, 
                              lowresscalefactor=sdfactor, 
                              lowpassfilterSD=lowpassfilterSD, 
                              return_hdu=True)

INFO: Low-res FWHM: 0.009166666666666667 deg [uvcombine.uvcombine] 
INFO: Converting data from 34479262.37608193 Jy / sr to 9386979181.888325 Jy / 
sr [uvcombine.uvcombine] 







First, we de�ne the FWHM of the low-resolution (single-dish) image, which de�nes the effective cutoff
point between the interferometer and the single dish. lowresfwhm  is equivalent to effdishdiam
from CASA, albeit in different units.

The kernels are weight arrays for the single-dish and interferometer data. They are the fourier
transforms of the low-resolution beam and (1-that kernel), respectively.

# pixel scale can be interpreted as "arcseconds"
# then, fwhm=40 means a beam fwhm of 40"
pixscale = 1*u.arcsec
lowresfwhm = 40*u.arcsec
nax1,nax2 = im.shape
kfft, ikfft = feather_kernel(nax2, nax1, lowresfwhm, pixscale,)



The weight functions for the single-dish image (blue; usually not applied) and the interferometer image
(purple). The weighting function is de�ned entirely by the single dish beam pro�le.



Then we specify a few parameters that are not all available in CASA. CASA's lowpassfiltersd  is

equivalent to our replace_hires , and their sdfactor  is our lowresscalefactor . The other

parameters, highresscalefactor , lowpassfilterSD , and deconvSD  are unavailable in

CASA.

# Feather the interferometer and single dish data back together
# This uses the naive assumptions that CASA uses
# However, there are a few flags that can be played with.
# None of them do a whole lot, though there are good theoretical
# reasons to attempt them.
im_hi = im_interferometered.real
im_low = singledish_im
lowresscalefactor=1
replace_hires = False
lowpassfilterSD = False
deconvSD = False
highresscalefactor=1
fftsum, combo = fftmerge(kfft, ikfft, im_hi*highresscalefactor, 
                        im_low*lowresscalefactor, 
                        replace_hires=replace_hires, 
                        lowpassfilterSD=lowpassfilterSD, 
                        deconvSD=deconvSD, 
                       )



The feathered data set looks pretty good.

This image looks pretty close to the original, but the peaks and valleys are not recovered (the contrast is
reduced compared to the original).





We then compare the feathered data to the input image.



The difference between the input image and the feathered image shows the remainder artifacts.



If we repeat the same experiment again, but with the shortest baseline at 12m instead of 9m, the
results are noticeably worse:

largest_scale = 42.*u.arcsec # (1.22 * 2*u.mm/(12*u.m)).to(u.arcsec, u.dimensionless_angles
())
smallest_scale = 2.5*u.arcsec
image_scale = im.shape[0]*pixscale # assume symmetric (default=256)
ring = (rr>=(image_scale/largest_scale)) & (rr<=(image_scale/smallest_scale))

# create the interferometric map by removing both large and small angular
# scales in fourier space
imfft = np.fft.fft2(im)
imfft_interferometered = imfft * np.fft.fftshift(ring)
im_interferometered = np.fft.ifft2(imfft_interferometered)

im_hi = im_interferometered.real
lowresscalefactor=1
replace_hires = False
lowpassfilterSD = False
deconvSD = False
highresscalefactor=1
fftsum, combo = fftmerge(kfft, ikfft, im_hi*highresscalefactor, 
                        im_low*lowresscalefactor, 
                        replace_hires=replace_hires, 
                        lowpassfilterSD=lowpassfilterSD, 
                        deconvSD=deconvSD, 
                       )



The feathered image with 12m shortest baselines instead of 9m



The side-by-side images comparison again, but with 12m instead of 9m shortest baselines



The difference image (original - feathered w/12m shortest baselines)



It is more helpful to look at the difference in power spectra. Note that the axes are log-scaled.



The components that go in to the feather can help clarify the picture



Different combinations of parameters can yield very different results.

We have 8 parameter combinations:

Replace singledish-interferometer overlap w/interferometer, or average them
Filter out the small angular scales from the single dish or don't
Deconvolve the single dish (direct deconvolution) or don't



Replace vs AverageReplace vs Average
replace_hires  in uvcombine, lowpassfiltersd  in CASA

This approach may be useful if there is a lot of overlap between the interferometer & single-dish and
the interferometer image is considered much more reliable.



Replace vs AverageReplace vs Average



Filter out the small angular scales from the single dish or don'tFilter out the small angular scales from the single dish or don't
lowpassfilterSD  in uvcombine, unavailable in CASA.

The �lter function for the single-dish is usually not applied, as it is assumed to have already been
applied during the observation (the �lter function is the single dish PSF / main beam).



Filter out the small angular scales from the single dish or don'tFilter out the small angular scales from the single dish or don't



Deconvolve the single dish (direct deconvolution) or don'tDeconvolve the single dish (direct deconvolution) or don't
deconvSD  in uvcombine, unavailable in CASA

Perhaps the most relevant parameter, one can deconvolve the single-dish data prior to deconvolution.
This approach is a direct, frequency-space deconvolution, i.e., the data are divided by the kernel in the
fourier domain.

Direct deconvolution is problematic, as we are trying to undo a multiply-by-zero operation with a
divide-by-zero operation; as a result, the deconvolution diverges at high frequencies (small scales). We
therefore do not include data below the min_beam_fraction=0.1  by default.

AFAIK, this method is unavailable in CASA's feather  task, but it appears to be available in the C code

using something called GaussianDeconvolver  (see an old blog post,

 ).
http://ke�avich.github.io/blog/what-does-feather-do.html (http://ke�avich.github.io/blog/what-does-
feather-do.html)

http://keflavich.github.io/blog/what-does-feather-do.html


Deconvolve the single dish (direct deconvolution) or don'tDeconvolve the single dish (direct deconvolution) or don't



The next slides are a walkthrough of parameter exploration with different effective dish sizes.

First, we have a 12m single-dish combined with an interferometer with shortest baseline length of 12m.







Residuals are in blue.



A short-spacing limit of 12m for the interferometer and dish size of 12m is a bad case, but not the
worst.

ALMA's shortest baselines are 14.6m (main array) and 8.7m (7m array). L05, the 5th percentile baseline
length, is 21.4m (9.1m) for the 12m (7m) array.

A realistic case for ALMA is then a 9m shortest baseline and a 12m effective single dish.







Residuals are in blue.



This realistic case is still bad. The "best case", in which we have good UV overlap (e.g., a 24m dish instead
of a 12m), actually can get good theoretical recovery







Residuals are in blue.



CASA's default parameters are �ne, but for best performance, the single-dish image should be
deconvolved.

The appropriate choice of feather parameters depends (mildly) on the UV overlap:

If the single dish is substantially bigger than the shortest baseline, CASA's defaults or replacing
short-spacing with deconvolved single-dish both work well
If the single dish is comparable to the shortest baseline, the best results come from deconvolving
the single-dish data and weighted-averaging them with the interferometric



These feather experiments represent the absolute best-case scenario. They should be used as
references for comparison with any other combination technique.



Non-ideal casesNon-ideal cases
Besides simple UV coverage problems (which are expensive to �x and usually out of our control), there
are other issues:

Relative calibration
Relative sensitivity



Relative calibration is an issue if the data simply aren't calibrated perfectly (systematic uncertainties
are usually 5-15%) or if the single-dish data come from a different frequency range (e.g., using wide-
band bolometer data to �ll in the continuum zero-spacing).



Uncertainties in the "scale factor" and in the beam size of factors of 2-3 are realistic: for example,
SCUBA on the JCMT at 450 m has a very uncertain error beam
(

).

𝜇

http://adsabs.harvard.edu/abs/2018ApJ...853..171G
(http://adsabs.harvard.edu/abs/2018ApJ...853..171G)

http://adsabs.harvard.edu/abs/2018ApJ...853..171G


We can simulate calibration error using the highresscalefactor  and lowresscalefactor
parameters, which are included to correct for these errors

lowresscalefactor = 1.50
highresscalefactor = 1.0
fftsum, combo = fftmerge(kfft/lowresscalefactor, ikfft, im_hi*highresscalefactor, 
                        im_low*lowresscalefactor, 
                        replace_hires=replace_hires, 
                        lowpassfilterSD=lowpassfilterSD, 
                        deconvSD=deconvSD, 
                       )







lowresscalefactor = 1.0
highresscalefactor = 1.50
fftsum, combo = fftmerge(kfft, ikfft, im_hi*highresscalefactor, 
                        im_low*lowresscalefactor, 
                        replace_hires=replace_hires, 
                        lowpassfilterSD=lowpassfilterSD, 
                        deconvSD=deconvSD, 
                       )







Relative sensitivityRelative sensitivity
The cases we've treated above assume that the interferometer and single-dish telescope have in�nite
sensitivity; the "noise" in the image is actually part of the sky. So, what happens if we add observational
(as opposed to astrophysical) noise?

import radio_beam
import astropy.utils.misc
lowresscalefactor = 1.0
highresscalefactor = 1.0
sd_beam = radio_beam.Beam(lowresfwhm)
sd_beam_volume = (sd_beam.sr / pixscale**2).decompose()
noise_amplitude = 0.005
with astropy.utils.misc.NumpyRNGContext(0): 
   noise_sd = convolution.convolve_fft( 
       singledish_im.max() * noise_amplitude * np.random.randn(*singledish_im.shape) * sd_b
eam_volume, 
       sd_beam.as_kernel(pixscale))
noisy_sd = (singledish_im + noise_sd)
fftsum, combo = fftmerge(kfft, ikfft, im_hi*highresscalefactor, 
                        noisy_sd*lowresscalefactor, 
                        replace_hires=replace_hires, 
                        lowpassfilterSD=lowpassfilterSD, 
                        deconvSD=deconvSD, 
                       )









Now we'll do the same experiment with noise added to the interferometric image too.

In this case, we're adding Gaussian (white) noise evenly in baseline length, which is perhaps slightly
unrealistic.

lowresscalefactor = 1.0
highresscalefactor = 1.0
intf_beam = radio_beam.Beam(u.Quantity(smallest_scale, u.arcsec))
intf_beam_volume = (intf_beam.sr / pixscale**2).decompose()
assert intf_beam_volume < 100
noise_amplitude_intf = 0.0005
with astropy.utils.misc.NumpyRNGContext(0): 
   noise_intf = np.fft.fftshift(np.fft.fft2( 
       im_interferometered.real.max() * noise_amplitude_intf * np.random.randn(*im_interfer
ometered.shape) * intf_beam_volume 
       * np.fft.fftshift(ring)).real)
noisy_intf = (im_interferometered.real + noise_intf)
fftsum, combo = fftmerge(kfft, ikfft, noisy_intf*highresscalefactor, 
                        noisy_sd*lowresscalefactor, 
                        replace_hires=replace_hires, 
                        lowpassfilterSD=lowpassfilterSD, 
                        deconvSD=deconvSD, 
                       )









Finally, what happens if you assume your single-dish FWHM is smaller or larger than it really is?

In other words, what happens when you over/under weight the single-dish data?









ConclusionConclusion
Feathering is the most basic form of image combination, but it still has many adjustable parameters.

Feathering should be used as a reference when testing other techniques.

These slides, and others, can be found at https://ke�avich.github.io/talks/FeatheringPresentation/
(https://ke�avich.github.io/talks/FeatheringPresentation/)

https://keflavich.github.io/talks/FeatheringPresentation/

